Kinematic Modelling and Geometric Optimization of a Cable-driven Hand Exoskeleton for Haptic Applications

TIN HUU LE QUANG NGUYEN, VIET-HONG TRAN
Department of Mechatronic Engineering, Faculty of Mechanical Engineering,
Ho Chi Minh city University of Technology, VNU-HCM, Ho Chi Minh city, Vietnam
Email: 21203870@hcmut.edu.vn, tvhong@hcmut.edu.vn

Abstract: This paper describes kinematic model of a cable-driven hand exoskeleton and optimization of its geometry to meet primary performance requirements in haptic applications. Firstly, forward and inverse kinematics of both 2-link and 3-link finger configurations were derived. Then, an optimization problem to find proper lengths of the linkage, which maximize the efficiency of the drive system and the contact force at user’s fingertips which does not hinder dexterity points and ed degrees freedoms. The optimal results were subjected to a collision detection algorithm to finalize the exoskeleton’s geometry. The results will be the foundation for future studies on the design of cable routing system, contact force sensor system and drive system of the hand exoskeleton model.

Keywords: Exoskeleton, Haptic, Kinematic, Cable-driven, Optimization

Introduction:
Haptic interfaces attempt to replicate or enhance the touch experience of manipulating or perceiving a real environment through mechatronic devices and computer control [1]. For tasks requiring more dexterity and human experience is concerned, such as tele-manipulation [2], virtual reality [3], human assistive devices [4] and medical applications [5], it may be necessary to control applied forces on independent fingers rather than at the wrist, as joysticks and master arms do [6]. Hand exoskeleton can be used as one kind of haptic device, which is worn on the user’s hand and provides force feedback to the fingers.

A hand exoskeleton for haptic application should have two key functions: (1) to measure the kinematic configuration (position, velocity, acceleration) and contact forces of the user’s fingers and (2) to display contact forces to the user [7]. As a force feedback user interface, the hand exoskeleton should be user-friendly and effectively apply force to the fingers. A “user-friendly” glove is ergonomic and lightweight with a compact design that does not harm fingers. An “effective” glove provides controllable contact forces ranging from a gentle touch to full opposition to finger movement without kinematic constraints on the finger movement [8]. However, existing hand exoskeleton devices for haptic applications have not fully satisfied these criteria. They either are bulky and heavy or only accommodate limited range of motions and maximum contact forces [9-12].

In order to deliver a compact and lightweight hand exoskeleton, which is mounted on user’s hand, it is crucial to choose an appropriate drive mechanism. The current drive system for hand exoskeleton can be divided into three main categories: linkage-based, soft actuator and cable-driven. While linkage-based mechanism boasts the highest rigidity and has linear force transmission, it is bulky, produce high stresses on supporting connectors and has complicated structure [9-11]. Soft-actuator-based mechanism has high compliance, low inherent stiffness, safer interaction and higher power to weight ratio, however, it has longer setup time, produces shear forces on attachment points and has limited degrees of freedom [12-14]. Cable-driven mechanism provides rigid mechanical body support, lightweight and compact structure; has linear force transmission and its actuators can be placed far away. Its shortcomings are that its efficiency is relatively lower than others (because of the friction along the transmission) and the complexity of cables’ placement (because cable can only transmit forces when it is stretched) [8, 15-18]. Therefore, the mechanism to be used in this research for a lightweight and compact hand exoskeleton is cable-driven.

A hand exoskeleton which does not hinder any natural movements of the user can be delivered when we apply the knowledge about the special characteristics of human hand’s degrees of freedom. A human finger (except thumb), without abduction/adduction movements, can be considered as a 3-bar linkage (Figure 1) with 3 revolute joints. However, due to the anatomical model of human finger, especially the tendons placements, there is constraint between PIP and DIP joints in active movements. This is an almost linear relationship [19-20]. However, this constraint can be destroyed when the contact force axis goes through MCP or the contact area is not just the fingertip, but the fingerpad.
In this paper we established two kinematic models of hand exoskeleton, 2-link and 3-link, which, respectively, can be used in cases where the contact between PIP and DIP is kept and not. Then, an example of the procedure to optimize the 3-link cable-driven exoskeleton’s geometry in order to maximize drive system’s efficiency and contact forces is done. Lastly, we discuss optimization result and describe future work.

Materials and Methods:

2-link model

This model makes use of the constraint between PIP and DIP. For each finger, the exoskeleton mechanism and the finger itself can be modelled as a single 5-bar mechanism, as shown in Figure 2, where the hand/support pad represents the ground. Each finger has 3 links, and the exoskeleton mechanism for each finger has 2 links. The terminal link of the exoskeleton is assumed to be rigidly connected to the terminal link of each finger. Therefore, the system consists of 5 links in total: 1 ground link, 3 finger links and 1 mechanism link; 4 revolute joints and one angular relation between PIP and DIP. According to Grubler’s formula, the mobility of the system can be calculated, where DF is the system’s degrees of freedom, $n = 5$ is the number of links, $f_1 = 5$ is the number of lower-pair (1DOF) joints and constraints, $f_2 = 0$ is the number of higher-pair joints:

$$DF = 3(n-1) - 2f_1 - f_2 = 2 \tag{1}$$

Based on Figure 2, the forward kinematic equations for the fingertip position (x_N, y_N) are derived in Eqs. (2)–(4) in terms of the finger joint angles $(\theta_1, \theta_2, \theta_3)$ and the mechanism joint angles (α_1, α_2). Where l_i is the length of the i^{th} mechanism link $A_{i-1}A_i$, p_i is the length of the i^{th} finger link $P_{i-1}P_i$, d is the length of A_4P_x. Note that s and c represent sine and cosine.

$$x_N = p_1 s_{\theta_1} + p_2 s_{\theta_2} + p_3 s_{\theta_3} = l_1 c_{\alpha_1} + l_2 c_{\alpha_2} + ds_{\alpha_3} \tag{2}$$

$$y_N = p_1 c_{\theta_1} + p_2 c_{\theta_2} + p_3 c_{\theta_3} = y_{\alpha_1} + l_1 s_{\alpha_1} + l_2 s_{\alpha_2} - ds_{\alpha_3} \tag{3}$$

$$\phi = \theta_1 + \theta_2 = \alpha_1 + \alpha_2 + \alpha_3 \tag{4}$$

After solving (2)–(4), inverse kinematic equations, Eqs. (5)–(6), for mechanism joint angle (α_1, α_2) can be derived. Since the exoskeleton linkage is longer than the human finger, two solutions can be found: elbow up and elbow down configurations. The elbow up solution was chosen in order to avoid the collision between the finger and the linkage. In this case, the finger joint angles are prescribed.

$$\alpha_1 = \text{atan} 2 \left(\frac{y_N - y_{\alpha_1}}{x_N} \right) + \text{acos} \left(\frac{l_1^2 + x_N^2 + (y_N - y_{\alpha_1})^2 - (d^2 + l_2^2)}{2l_1 \sqrt{x_N^2 + (y_N - y_{\alpha_1})^2}} \right) \tag{5}$$

$$\alpha_2 = \text{atan} 2 \left(\frac{d}{l_2} \right) - \text{acos} \left(\frac{x_N^2 + (y_N - y_{\alpha_1})^2 - l_1^2 - (d^2 + l_2^2)}{2l_1 \sqrt{d^2 + l_2^2}} \right) \tag{6}$$

The inverse kinematic equations, Eqs. (7)–(9), for the posture of user’s finger $(\theta_1, \theta_2, \theta_3)$ can be derived, knowing the mechanism joint angles (α_1, α_2).

$$\theta_1 = \alpha_1 + \alpha_2 - \theta_2 \tag{7}$$

$$\theta_2 = -\text{acos} \left(\frac{x_{p_2}^2 + y_{p_2}^2 - p_1^2 - p_2^2}{2p_1p_2} \right) \tag{8}$$

$$\theta_3 = \frac{2}{3} \theta_2 \tag{9}$$

Where Eq. (9) is derived from [19] and

$$x_{p_1} = x_N - p_1 c_{\alpha_3} \tag{10}$$

$$x_{p_3} = x_N - p_3 c_{\alpha_3} \tag{11}$$

3-link model

In this model, because of the loss constraint between PIP and DIP, DF of the system increases by 1, Eq. (12). Hence, a third exoskeleton’s link is added in order to compensate. The system can be modelled as a single 6-bar mechanism, as shown in Figure 3 with similar assumption and annotations as in the 2-link model. It consists of 6 links in total: 1 ground link, 3 finger links, 2 haptic mechanism links and 6 revolute joints. In this case, the mobility of the system can be recalculated with $n = 6$, $f_1 = 6$ and $f_2 = 0$:

$$DF = 3(n-1) - 2f_1 - f_2 = 3 \tag{12}$$
Kinematic Modelling and Geometric Optimization of a Cable-driven Hand Exoskeleton for Haptic Applications

Figure 3: Kinematic diagram of 3-link model

Similarly, we can write the forward kinematic equations, Eqs. (13)–(15), and inverse kinematic equations, Eqs. (16)–(18), (21)–(23) for this model. Forward kinematic equations:

\[
x_i = p_f c_{\alpha_i} + p_s c_{\beta_i} + p_p c_{\gamma_i}
\]

\[
y_i = p_f s_{\alpha_i} + p_s s_{\beta_i} + p_p s_{\gamma_i}
\]

Inverse kinematic equations for mechanism joint angles:

\[
\alpha_i = \tan\left(\frac{y_i}{x_i}\right) + \cos\left(\frac{l_i^2 - l_i^2 + x_i^2 + y_i^2}{2l_i}\right)
\]

\[
\alpha_i = \theta_1 + \theta_2 + \theta_3 - \alpha_1 - \alpha_2
\]

Inversion kinematic equations for finger joint angles:

\[
\theta_1 = \tan\left(\frac{y_1}{x_1}\right) + \cos\left(\frac{p_1^2 - p_2^2 + x_1^2 + y_1^2}{2p_1}\right)
\]

\[
\theta_2 = \frac{y_2^2 + y_1^2 - p_1^2 - p_2^2}{2p_2p_1}
\]

Example of 3-link cable-driven exoskeleton’s geometry optimization

The linkage geometry optimization problem for a 3-link cable-driven hand exoskeleton was proposed in [8]. It is a multi-objective optimization function, Eq. (26), with force transmission ratio objective function \(z_1\), Eq. (27), and contact force objective function \(z_2\), Eq. (28).

\[
Z = w_1 z_1 + w_2 z_2
\]

Where \(w_1 = w_2 = 1\) are the weighting coefficients.

\[
z_1 = \sqrt{\alpha_{i, \text{max}}^2 + \alpha_{i, \text{min}}^2 + \alpha_{i, \text{max}}^2}
\]

Where \(\alpha_{i, \text{max}} = a_{i, \text{max}} - a_{i, \text{min}}, i \in \{1, 2, 3\}\) is the range of mechanism joint angle \(\alpha_i\) with a given set of exoskeleton links’ length \((l_1, l_2, l_3)\).

\[
z_2 = \sqrt{\alpha_{21}^2 + \alpha_{22}^2 + \alpha_{23}^2}
\]

Where

\[
\alpha_{21} = l_1 c_{\alpha_i} + l_2 c_{\alpha_i} + l_3 c_{\alpha_i} + ds_{\alpha_i}
\]

\[
\alpha_{22} = l_1 c_{\alpha_i} + l_2 c_{\alpha_i} + l_3 c_{\alpha_i} + ds_{\alpha_i}
\]

The constraints for this optimization problem [8] were stated based on limitations in kinematic configurations, Eq. (32), mechanical design, Eq. (33), and the collision-free optimal requirement, Eq. (34).

\[
c_1 : l_1 + l_2 + l_3 > p_1 + p_2 + p_3
\]

\[
c_2 : a_{i, \text{max}} \leq 150^\circ, i \in \{1, 2, 3\}
\]

\[
c_3 : l_1 > p_1
\]

In this paper, we propose a Monte Carlo approach to solve this optimization problem:

- **Step 1**: Establish searching range for \((l_1, l_2, l_3)\) and user’s range of motions for each joint angle. The constraint between PIP and DIP \(\theta_1 = \frac{2\theta}{3}\) is kept due to it is satisfied in most normal operations.

- **Step 2**: Choose one set of \((l_1, l_2, l_3)\).

- **Step 3**: Calculate values of \((\alpha_1, \alpha_2, \alpha_3)\) and \(z_2\) for each set of \((\theta_1, \theta_2, \theta_3)\).

- **Step 4**: Calculate \(z_1\).

- **Step 5**: Calculate \(Z\). If all set of \((l_1, l_2, l_3)\) has been chosen, go to Step 6; else, go to Step 2.

- **Step 6**: Remove all complex \(Z\) values, which are caused by having any complex \(\alpha_i\) during the calculation.

- **Step 7**: Applying constraints to the rest of \(Z\) values to remove any unsatisfied value.

- **Step 8**: Choose the minimum \(Z\) value and corresponding set of \((l_1, l_2, l_3)\).

- **Step 9**: Detecting collisions between mechanism links and user’s finger with the chosen set of \((l_1, l_2, l_3)\) by looking for any intersection with every set of \((\theta_1, \theta_2, \theta_3)\). This time, the constraint between \(\theta_2\) and \(\theta_1\) is abolished. If collision is detected, remove the set of \((l_1, l_2, l_3)\) and the corresponding \(Z\) and go to Step 8; else, choose that set as the final values.
Results and Discussion:
The optimization procedure was done with author’s index finger dimension and the range of motion, Table 1, \(d = 5\text{mm}, \ y_h = 20\text{mm} \). The searching range was from \((p_1, p_2, p_3)\) to \((2p_1, 2p_2, 2p_3)\) [8].
The final result is shown in Table 2.

<table>
<thead>
<tr>
<th>Finger joint</th>
<th>Angular motion range (deg)</th>
<th>Finger link length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP</td>
<td>[-90;30]</td>
<td>45</td>
</tr>
<tr>
<td>PIP</td>
<td>[-120;0]</td>
<td>28</td>
</tr>
<tr>
<td>DIP</td>
<td>[-80;0]</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2: Optimization result

We examined the result by drawing the workspace of user’s finger and exoskeleton using the joint angle sweep method, Figure 4. The figure shown that the workspace of user’s finger was a subset of the mechanism’s workspace, ensuring unhindered finger motion. This result is different from which acquired in [8] because of the differences in target finger dimensions, searching range and the application of PIP-DIP constraint during the optimization.

![Figure 4: 2D workspace comparison between index finger and the exoskeleton mechanism when \(l = [45.1;48.1;14] \), \(\alpha_1 = [-80;70] \), \(\alpha_2 = [-120;0] \), \(\alpha_3 = [-25;90] \).](image)

Conclusion:
This paper has shown the kinematic models of 2-link and 3-link cable-driven hand exoskeleton and their working condition; proposed a Monte Carlo approach for the mechanism geometry optimization problem and applied it to solve for the links length of an index finger mechanism. The optimal result was examined to verify the algorithm.
Future work will be devoted to the design of cable routing system, contact force sensor system and drive system of a 3-link cable-driven hand exoskeleton for haptic application.

References:
Kinematic Modelling and Geometric Optimization of a Cable-driven Hand Exoskeleton for Haptic Applications

2015 IEEE International Conference, pp. 4967-4972. IEEE.

